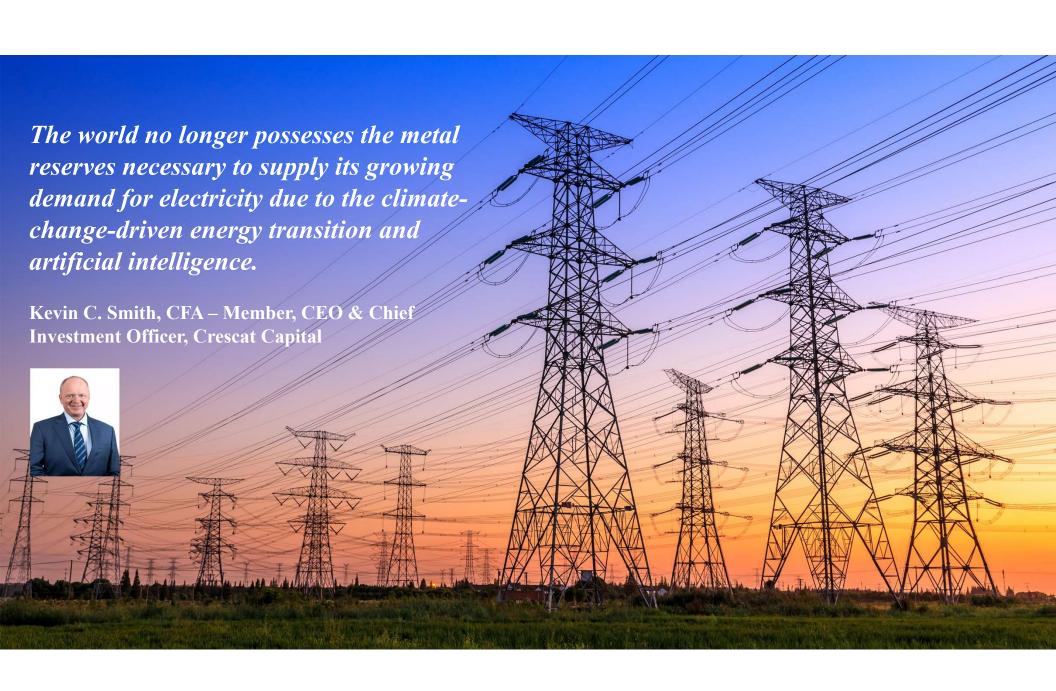


Building a Domestic Supply of Critical Metals Through Recycling

A game changer in metals production:no emissions, no effluent, no slag, no environmental damage

Gold, Silver, Palladium, Copper, Zinc, Tin, Lead, Nickel, Aluminum

October 2025


Disclaimer

THIS MANAGEMENT PRESENTATION (The "presentation") was prepared as a summary overview only of the current affairs of Greentech Metals Inc. "Greentech" or the "company") and was not prepared for the purpose of assisting prospective investors in making a decision to invest in Greentech. Information disclosed in this presentation is current as of Q2 2025 except as otherwise provided herein and Greentech does not undertake or agree to update this presentation after the date hereof. All information contained in this presentation is derived solely from the management of Greentech and otherwise publicly available third-party information that has not been independently verified by the company. Further, the company does not make any representation as to the completeness, truth or accuracy of the information contained in this presentation. The company expressly warns readers not to rely on the information contained herein as advice (legal, financial, tax or otherwise) to current or potential investors. Accordingly, any use of this information is at your risk and without liability to the company. This presentation does not constitute and should not be construed as either a public or private offer to sell or the solicitation of an offer to purchase securities in the capital stock of Greentech in any jurisdiction in which such offer, solicitation or sale would be unlawful. Each prospective investors should contact his/her or its own legal adviser, independent financial adviser or tax adviser for legal, financial or tax advice regarding investment related decisions respecting the securities of the company. No person has been authorized to give any information or make any representation other than those contained in this presentation and, if given and/or made, such information or representations must not be relied upon as having been so authorized.

FORWARD-LOOKING INFORMATION This Presentation contains certain statements, which may constitute "forward-looking information" within the meaning of Canadian securities law requirements. Forward-looking information involves statements that are not based on historical information but rather relate to future operations, strategies, financial results or other developments. Forward-looking information is necessarily based upon estimates and assumptions, which are inherently subject to significant business, economic and competitive uncertainties and contingencies, many of which are beyond Greentech's control and many of which, regarding future business decisions, are subject to change. These uncertainties and contingencies can affect actual results and could cause actual results to differ materially from those expressed in any forward-looking statements made by or on Greentech's behalf. Although Greentech has attempted to identify important factors that could cause actual actions, events be considered or results to differ materially from those described in forward-looking information, there may be other factors that cause actions, events or results to differ from those anticipated, estimated or intended. All factors should carefully, and readers should not place undue reliance on Greentech's forward-looking information. Examples of such forward-looking information within this Presentation include statements relating to the future price of minerals, future capital expenditures, success of technical activities or processes, government regulation of operations and environmental risks. Generally, forward-looking information can be identified by the use of forward-looking terminology such as "expects," "estimates," or variations of such words and phrases (including negative and grammatical variations) or statements that certain actions, events or results "may." "could." "minich!" or "cocur."

FORWARD-LOOKING STATEMENTS are not guarantees of future performance and involve risks, uncertainties and assumptions, which are difficult to predict. Assumptions underlying Greentech's expectations regarding forward-looking statements or information contained in this Presentation include, among others, Greentech's ability to comply with applicable governmental regulations and standards, its success in implementing its strategies, achieving its business objectives, the ability to raise sufficient funds from equity financings in the future to support its operations, and general business and economic conditions. The foregoing list of assumptions is not exhaustive. Prospective investors reading this Presentation are cautioned that forward-looking statements are only predictions, and that Greentech's actual future results or performance are subject to certain risks and uncertainties including: risks related to Greentech's history of losses, which may continue in the future; risks related to increased competition and uncertainty related to additional financing that could adversely affect its ability to attract necessary capital funding in the future; risks related to its officers and directors becoming associated with other processing or recycling companies, which may give rise to conflicts of interest; uncertainty and volatility related to stock market prices and conditions; further equity financing(s), which may substantially dilute the interests of Greentech's shareholders; risks relating to its technical operations; dependence on general economic, market or business conditions; changes in laws and regulations.

FORWARD-LOOKING ASSUMPTIONS/ESTIMATES in this Presentation reflects Greentech's current views with respect to future events and are necessarily based upon a number of assumptions and estimates that, while considered reasonable by Greentech, are inherently subject to significant business, economic, competitive, political and social uncertainties and contingencies. Many factors, both known and unknown, could cause actual results, performance or achievements to be materially different from the results, performance or achievements that are or may be expressed or implied by such forward-looking information contained in this Presentation and documents incorporated by reference, and we have made assumptions based on or related to many of these factors. Such factors include, without limitation: fluctuations in spot and forward markets for certain mineral and metal commodities such as gold, silver, platinum, zinc, aluminum, copper and tin (and others); laws and regulations governing our operation and development activities; its ability to obtain or renew the licenses and permits necessary for the development, construction and commencement and continuation of operations; risks and hazards associated with the business of process engineering construction, (including environmental hazards and industrial accidents); environmental regulations and legislation; the effects of climate change, extreme weather events, and seismic events, and the effectiveness of strategies to deal with these issues; risks relating to Greentech's perations; fluctuations in current and retain qualified personnel; employee relations with and claims by local communities and non-governmental organizations; the effectiveness of its internal control over financial reporting; claims and legal proceedings and supply chain disruptions; relations with and claims by local communities and non-governmental organizations; the effectiveness of its internal control over financial reporting; claims and legal proceedings and periodical producing statements are oblig

Electronic Waste, Growing Five Times Faster than Documented E-waste Recycling*

An Escalating Global Problem

- A record 62 million tonnes (Mt) of e-waste was produced globally in 2022 up 82% from 2010
- E-waste is on track to rise another 32% to 82 million tonnes by 2030
- Billions of dollars of strategically-valuable resources are squandered and dumped. Just 1% of rare earth element demand is met by e-waste recycling
- The Global E-waste Monitor foresees a drop in the documented collection and recycling rate from 22.3% in 2022 to 20% by 2030.
- The world is dependent on only a few countries for rare earth elements, despite their unique properties crucial for future technologies, including renewable energy generation and emobility.

Smelting is an old and dirty capital-intensive industry

Greentech Metals Inc.

Greentech = Clean Technology Disruptor for the Circular Economy

 Traditional global E-waste recycling practices, create toxic emissions and leachate during the extraction process, causing harm to both humans and the environment. Greentech technology creates zero emissions/effluent/slag

• We have created a first-of-its-kind complete supply chain for this, by striking a series of deals to rapidly bring recycled metals to market. We have precious metals off take secured with Swiss refiners, feedstock supply is assured through 10-year agreements

A Clear Path to Profits

Contracted Supply & Derisked Business

Nearly limitless resource. Non-depleting asset with committed raw material supply in excess of annual requirements

Technically proven and largely derisked production of high purity gold and other precious metals from waste printed circuit boards

Minimal risk compared to traditional mining and smelting

Proven and Scalable Process

Proprietary separation and aqueous refining

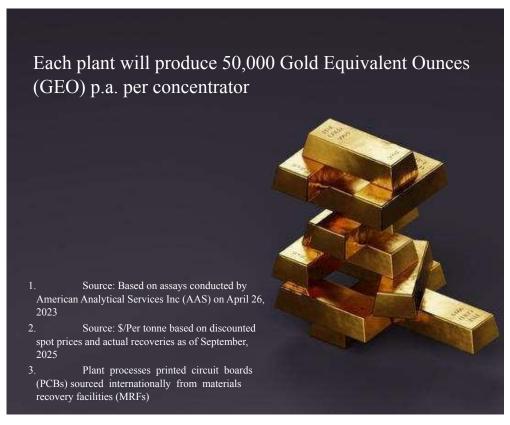
Highly scalable and globally repeatable

Highly profitable {US\$2,200 /oz AISC (All in Sustaining Cost)}

Strong environmental credentials

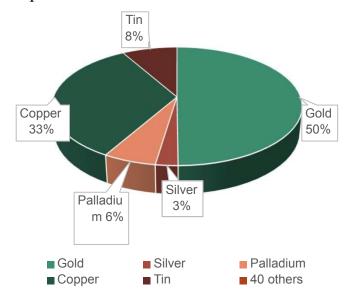
Compelling Financials

US\$ 17.5m Capex (compared to a traditional gold mine producing the equivalent gold ounces)


US\$ 7.5m OPEX

Production 50,000 oz per annum gold equivalent per plant

Short timeline to production (<12 months)


Payback (approx. 12 months following start up)

Technical viability and economic potential is proven across value-chain, from source-to-sale

\$18,286 metal value recovered per tonne processed^{1,2}

Based on assays and confirmed with published data, average potential contained metal value² per tonne of printed circuit boards³

Metals at 100x better grades than traditional ores
+/- 40 Other Metals including REEs

Job #GMI 042623-SC

Analysis: ICP-35 Element Scan

Analysis Code: M-ICP-35-4A Sample Type: 'Circuit Board,

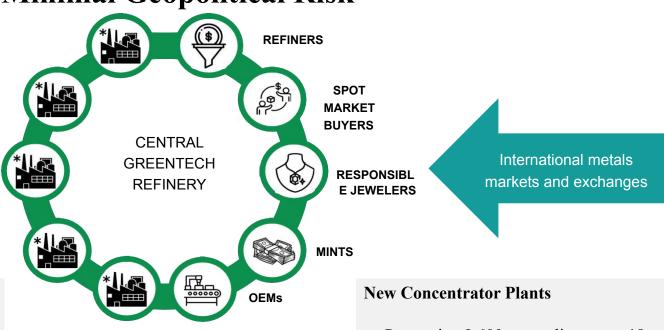
m Greentech Metals, Inc 1001-409 Granville St

Attn: Tom Klaimanee tklaimanee@alpharesmgt.co

		05/10/2023 Test l	Results	•	Type: 'Circuit Board,	Vano	couver, BC V6C 1T2 ada 604-218-6507						
#	Sample Number	AI <\$0 ppm	As <5 ppm	Ba ≪ ppm	Be <1 ppm	Bi <5 ppm	Ca ≪9 ppm	Cd	Ce ≪ ppm	Co <2 ppm	Cr ⊲ ppm	Cu <2 ppm	Fe <50 ppm
1	1	407	<5.00	23.0	<1.00	<5.00	54.0	5.50	19.7	<2.00	<2.00	708000	389
2	2	37500	41.7	45.0	<1.00	<5.00	69.0	7.60	33.5	20.8	5420	712000	26500
3	3	704	29.8	156	9.80	<5.00	197	6.00	<5.00	<2.00	892	668000	4790
	3 Dup	103000	<5.00	73.7	<1.00	<5.00	123	6.10	22.9	<2.00	5.80	592000	836
#	Sample Number	Ga	К	La	Li	Mg	Mn	Мо	Na	Nb	Ni	P	Pb
		<5 ppm	<50 ppm	<5 ppm	<2 ppm	<50 ppm	<2 ppm	<2 ppm	<50 ppm	<5 ppm	<2 ppm	<50 ppm	<5 ppm
1	1	<5.00	441	<5.00	<2.00	<50.0	9.20	<2.00	275	19.1	3010	251	90.1
2	2	<5.00	396	<5.00	<2.00	<50.0	311	42.8	122	16.9	6020	223	1110
3	3	<5.00	431	<5.00	<2.00	<50.0	74.5	3510	53.2	23.3	5270	393	28100
	3 Dup	<5.00	376	<5.00	<2.00	471	25.7	5.00	<50.0	14.4	4580	198	23600
#	Sample Number	s	Sb	Sc	Sn	Sr	Ti	v	w	Y	Zn	Zr	
		<50 ppm	<5 ppm	<2 ppm	<5 ppm	<2 ppm	<5 ppm	<5 ppm	<5 ppm	<1 ppm	<2 ppm	<2 ррт	
1	1	<50.0	11.2	13.4	100000	7.00	6.50	<5.00	46.0	<1.00	105000	37.8	
2	2	172	177	11.1	23200	2.00	12.7	20.0	21.9	<1.00	138000	4.50	
3	3	203	24.3	11.5	165000	9.00	10.2	< 5.00	51.0	<1.00	57600	46.1	
	3 Dup	169	30.4	10.7	107000	5.00	14.2	6.30	64.0	1.20	75600	17.8	
#	Sample Number	Au			Ag	Pt Pd			Pd	Rh			
		FA-Au/s <0.002 Tr. Oz / T	2	<0	Au/Ag 0.100 z/Ton	<0	-ICP 0.020 pm)	<0	-ICP .020 pm)	FA-ICP <0.020 (ppm)			
1	1	5.29		2	28.4	< 0.020		7	7.71	< 0.020			
2	2	3.82		3	39.8	< 0.020		9	1.73	< 0.020			
3	3	3.78		3	39.0	< 0.020		3	0.2	< 0.020			
	3 Dup	4.46		5	53.3	<0.020				< 0.020			
	The indicated analytes (*) are not listed on the laboratory's current scope of accreditation Au The indicated analytes (*) are not listed on the laboratory's current scope of accreditation Au Testina AAS Form ICP_35Wr Revision 1:3 05/20 and Ag results are not corrected unless otherwise specified. According to the control of the cont				LA ing								

5 Year Projected Cash flow

	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5
TONNES PER ANNUM	400 t/a	9,600 t/a	9,600 t/a	19,200 t/a	19,200 t/a
BEGINNING CASH ON HAND	25,000,000.00	13,483,000.00	66,233,000.00	82,883,000.00	179,533,000.00
CASH RECEIPTS	7,273,000.00	176,600,000.00	177,000,000.00	386,000,000.00	398,000,000.00
LESS: CASH PAYMENTS					
OPEX	1,150,000.00	23,500,000.00	30,000,000.00	55,000,000.00	60,000,000.00
COST OF GOODS SOLD:	3,640,000.00	96,000,000.00	101,000,000.00	230,000,000.00	245,000,000.00
CAPEX	14,000,000.00		25,000,000.00		
	(11,517,000.00)	57,100,000.00	21,000,000.00	101,000,000.00	93,000,000.00
DEBT 17.5M, repayment over 7 years.		4,350,000.00	4,350,000.00	4,350,000.00	4,350,000.00
NET CASH CHANGE - Inflow	\$13,483,000.00	\$66,233,000.00	\$82,883,000.00	\$179,533,000.00	\$268,183,000.00
(Outflow)					


Global Hub & Spoke Strategy: Rapid Scalability with Minimal Geopolitical Risk

Concentrator plants located close to raw material supplies

Building a Highly Scalable Streamlined System

- Hub and spoke model to minimize costs, optimize e-waste handling and specialized extraction
- Reduces shipping costs.

Greentech Metals Inc.

Building Strategic Partnerships

- Local Original Equipment Manufacturers (OEMs)
- Local Materials Recovery Facilities. (MRFs).

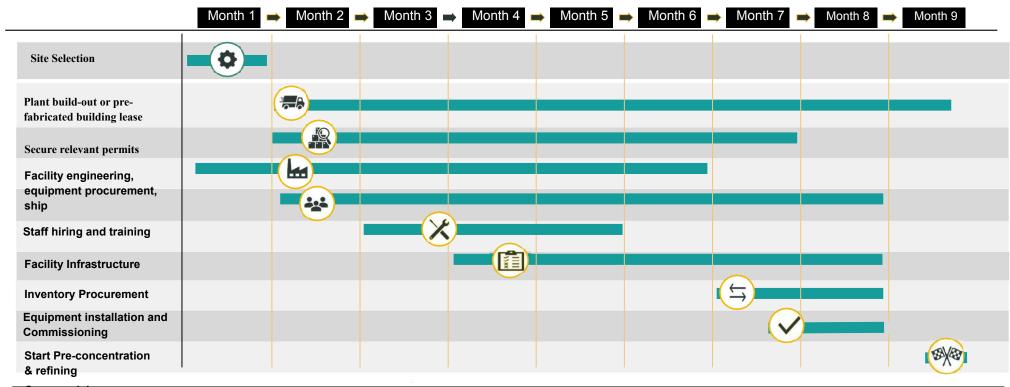
- Processing 9,600 tpa, online every 18 months for 6 years
- Located where the raw material exists

10

• Each concentrator will produce 50,000¹ oz Gold Equivalent Ounces.

Source: 1. Based on discounted Gold price as of September, 2025.

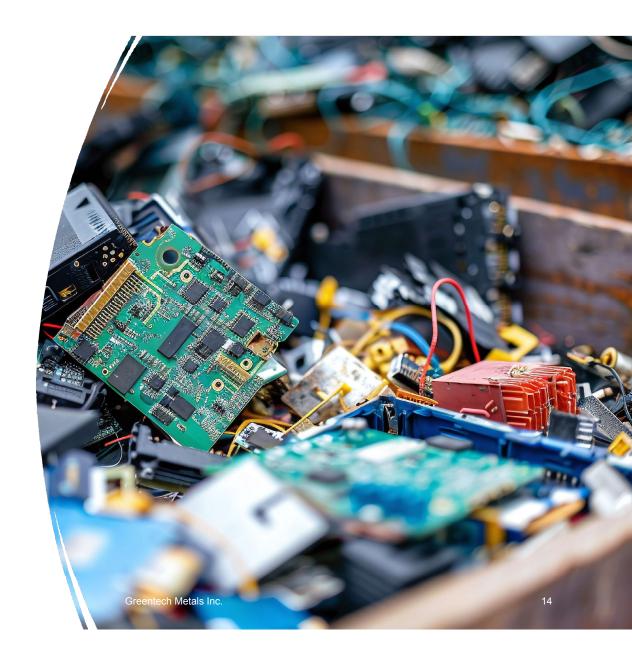
Protecting Greentech Metals Multi-faceted IP


 	Purchasing	□ Sourcing□ Quality control	
	Equipment	□ Proven machinery□ Due diligence and testing	Greentech's IP will remain exclusive, unpatented and
0	Preprocessing	□ Separation□ Optimal particle size	undisclosed as a key element of competitive advantage.
X	Hydrometallurgy	□ Sequence□ Lixiviants	

An Easier and Low Risk Option for Producing Metals

Risk	Mining	Smelting	Greentech	
Environmental Risk	YES	YES	NO	
Capital Intensity	YES	YES	NO	
Social Risk	YES	YES	NO	
Geopolitical Risk	POTENTIAL	POTENTIAL	NO	
Regulatory Risk	YES	YES	POTENTIAL	
Terminal Asset	YES	NO	NO	
Extensive Waste Stream	YES	NEUTRAL	NO	
Emissions and Effluent Risk	YES	YES	NO	
Scalability Risk	YES	POTENTIAL	NO	
Time to Production	YES	YES	NO	
Cost of Energy Risk	YES	YES	NO	
Geological Risk	POTENTIAL	NO	NO	

Timeline to Cashflow


Milestones to Sustainable Commercial Revenues

Commercial revenue

Key Risk Mitigation, Milestones & Achievements

- 4 years of R&D
- Low CAPEX
- Short timeline to production: <12 months
- Rapidly scalable business model
- Derisked geographically, socially, geologically and environmental
- Proprietary IP procurement, milling and refining process
- Raw material supply contracts in place.
- Qualifies for carbon credits
- Experienced team in mining, metals processing and metals markets

Project Summary

Each plant will recover the highest purity, recycled metals in a sustainable and eco-friendly manner

Production

- Process 9,600 TPA of PCBs in hand supply commitment for 24,000 TPA
- Production 50,000¹ Gold Equivalent Ounce per annum
- Output, high purity Au, Ag, Pd, Cu, Sn, Pb, Ni, Al

Investment

- 1st concentrator and refinery US\$25,000,000
- Projected Annual Free-Cash Flow per plant >US\$60,000,000
- Rapidly scalable via addition of 1 concentrator per 18 months

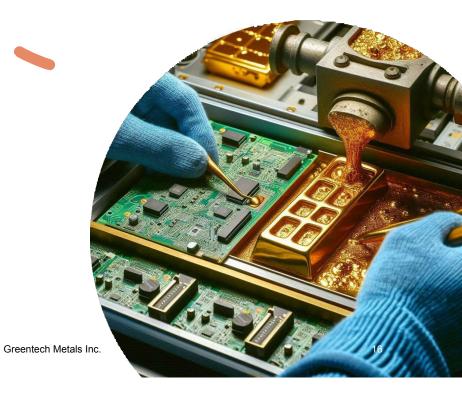
Environment

- Qualifies for Carbon Credits
- Utilizes an abundant and troublesome waste stream
- Zero emissions or effluent
- Low energy requirements

Greentech Metals Inc.

Recycling metals, not only saves energy but they can be recycled endlessly with no loss in quality or purity

Source: 1. Based on discounted Gold price as of September, 2025.


Science combined with knowhow, is the key to transforming the ordinary into the extraordinary

Tony Wonnacott, Director

Mobile:416-953-5879

https://www.greentech-metals.com/

E-Waste Processing, Competitive Landscape

Company Name	Public or Private	Comments		
Excir	Private	Recycles gold from e-waste		
Modern Mining	Private, approved for IPO	Recycles Au, Ag, Cu, Pd, from low grade e-waste		
Royal Mint	Government owned	Recycles gold from e-waste		
Emew Corporation	Private	Specialises in metals recovery from e- waste		
Eco-Goldex	Private	Provides eco-friendly precious metals extraction technology		
Aurubis	Public	Global provider of non-ferrous metals, upgrades mined ore with e-waste.		
Boliden	Public	Swedish miner and smelter, upgrades mined ore with e-waste.		
Pyrocycle	Private			
Glencore	Public	Global miner and smelter, upgrades mined ore with e-waste.		

A Proven Team Decades of Mining and Recycling Experience

Basil Botha, M.B.A, CEO

Mr. Botha has over 40 years of experience in mining specialty minerals and metals, with a global supply network and has owned and operated coal mines in South Africa, producing 3.2 million tons/year for Sasol (NYSE:SSL- US\$10 billion mkt cap). Basil also pioneered the devolatilization of metallurgical coals for South Africa's steel industry. Mr. Botha is a former chairman of Ares Strategic Mining, Nordic Gold, Lithium Americas and co-founder of Modern Mining Technology Corp., aiming for a NYSE listing in 2024.

Tony Wonnacott, Director

Tony Wonnacott is a corporate securities lawyer based in Toronto, Ontario with over 25 years of experience. He is a member of the Law Society of Upper Canada and holds a B.Comm. (cum laude) from Saint Mary's University and an LL.B. from Dalhousie University. He began his career at a major Toronto law firm in the banking and securities field before moving to work as a legal consultant to a number of companies, primarily in the mining and resource industry. As a consultant, officer and director of several of these companies, Mr. Wonnacott has been involved with the successful listings of private companies, the outright sale of a company for approximately \$750 million and capital raisings in excess of \$1 billion."

Procurement Manager

With 18+ years of leadership in procurement, our procurement specialist has experience across aerospace, recycling, and metals refining. As former VP at Aerospace recycling firm, he sourced global assets and led the teardown of 130+ jet engines. He also developed an international sourcing network. As the former President of a refining business, he drove company growth and managed key accounts. He has built strategic relationships

across multiple industries for precious metal transactions.

Grant T Smith, CFO

Mr. Smith has extensive experience as a Chief Financial Officer for public companies operating in minerals and metals as well as oil and gas. Mr. Smith is a CPA and a Chartered Director and currently serves on the boards of Angkor Resources Corp and Emergent Metals Corp. Mr. Smith's experiences in public companies have taken him around the world overseeing operations from Mexico to Finland and Cambodia to Portugal. Experience in public practice include articling with PwC and founding Clearline Chartered Accountants.

Paolo Sabatini Technical Advisor/Consultant

Mr. Sabatini is an experienced project manager with over 35 years of experience in waste recovery and recycling, renewable energy, and real estate development. Mr. Sabatini has successfully managed project developments worth over \$350 million and has an extensive knowledge of Eastern and Central European countries. Mr. Sabatini is the CEO and Co-Founder of Reviron d.o.o., a Slovenia-based company that specializes in alternative fuels and commercial waste trading and logistics. As a manager and co-founder, he has driven several different companies to success. Mr. Sabatini's expertise in waste industries, project management and development make him an invaluable asset to Greentech Metals business in the future expansion of operations in Eastern and Central Europe.